Future Directions:
Medications and Long Term Complications, Expanding our Options

Simon Horslen
Professor of Pediatrics
University of Washington
Medical Director of Liver and Intestine Transplantation, CHRMC, Seattle
Immunosuppressive Regimens in Pediatric Liver Transplantation

SPLIT survey 27 centers responded

- No induction therapy
 - Tacrolimus and steroids 16 centers
 - Cyclosporin and steroids 1 center
 (steroids weaned off between 3 months and >1 year)

- Anti-IL2R induction
 - Tacrolimus and steroids 9 centers
 (steroids weaned off between 3 months and >1 year)

- ATG induction
 - Tacrolimus 1 center

SPLIT analysis 2007 – presented at annual meeting, Nashville, Oct 2007
Long Term Complication

- Rejection
 - Late acute rejection
 - Chronic rejection
- PTLD and other cancers
- Growth failure
- Metabolic bone disease
- Renal dysfunction
- Hypertension
- Hyperlipidemia
- Increase cardiovascular risks
Immunosuppressive failure

Too little
OR
Too much
Approaches to immunosuppressive drug management

Traditional approach
- Monitor drug levels
- Protocol reductions in drug doses/levels over time
- Monitor liver function, renal function, viral loads, etc and respond
- Protocol biopsies
- Drug combinations to limit non-immune side-effects
Alternative Approaches

- Induction therapy
- Steroid withdrawal or avoidance
- Calcineurin inhibitor minimization
- Immune function monitoring
- New Immunosuppressive drugs
- Tolerance
Induction Immunotherapy
Induction agents

• Cytolytic agents
 – OKT3
 – ATG
 – Campath 1H

• Interleukin 2 receptor antagonists
 – Basiliximab
 – Daclizumab
Anti-IL-2R

- IgG1 monoclonal
- High affinity for IL-2R α-chain (CD25)
- Inhibit clonal expansion of activated T-lymphocytes
- Low antigenicity
- Minimal cytokine release
Pediatric Studies using IL-2R agents – Renal transplantation

• NAPRTCS – pooled kidney data
 – Daclizumab (n=284)
 – Basiliximab (n= 166)
 – No induction (n=711)

 – Incidence of AR 23-26% v 34% at 1 yr
 – Graft survival 95-97% v 93%

• Many single center reports
Pediatric Studies using IL-2R agents - liver

Single center data only

– Acute rejection

• 11.5% v 61% (Ganschow et al)
• 30% v 63% (Asensio et al)
• 39% v 75% (Heffron et al)
Toxicity

• IL-2R antagonists very well tolerated
• Minimal cytokine release
• No hematological toxicities (no –penias)
• Concern regarding viral infection
 – EBV & CMV
 – Hepatitis C
Figure 1: K-M Analysis of Time to Death By Induction Therapy

None (n=2159) p=0.03
IL-2 (n=283)
ALG or OKT3 (n=260) p=0.53

SPLIT analysis 2007 – presented at annual meeting, Nashville, Oct 2007
Figure 2: K-M Analysis of Time to Graft Failure By Induction Therapy

By Induction Therapy

- None
- IL-2: p=0.0005
- ALG or OKT3: p=0.31
Figure 3: K-M Analysis of Time to First Rejection By Induction Therapy

- None
- IL-2: RR 0.646, p<0.0001
- ALG or OKT3

PERCENT REJECTION

MONTHS

0 6 12 18 24 30 36 42 48 54 60

0 20 40 60 80 100
Induction Agents - Conclusion

• Induction with IL-2R antagonist improves graft and patient survival and reduces incidence of early acute rejection

• Agents well tolerated and not associated with significant increase in complications

• Freedom from early rejection should enable more aggressive weaning of other immunosuppressive agents thus limiting short and long-term toxicities
Steroid Withdrawal or Avoidance
Steroid Withdrawal

• Benefits
 – Decrease steroid-related complications
 • Infections
 • Diabetes
 • Hypertension / Cardiovascular disease
 – Improve growth
 – Better adherence
 – Tolerance?
Steroid Usage By Follow-Up Time

SPLIT analysis 2007 – presented at annual meeting, Nashville, Oct 2007
Steroid-free immunosuppression in Pediatric Liver Transplantation

- Induction therapy universal
- Tacrolimus based
- Adjunctive MMF or rapamycin common
- Reperfusion methylprednisolone bolus common
- Acute rejection treated with steroids
Calcineurin inhibitor minimization

• More a concern in renal transplantation because of renal injury from this class of drugs
• Substituted with MMF &/or Sirolimus
• Exchange one side–effect profile for another
• Increased rejection and graft loss seen
Immune function monitoring

• EBV viral load
• Cytokines – IL10, sCD30,
• HLA antibodies
• Lymphocyte markers – CTLA4
• Assay of donor specific alloreactivity
 – ELISPOT
• Assay of immune cell responses
 – Cyclex Immuknow – ATP concentrations in CD4+ T-cells
New immunosuppressive drugs

• Small molecules
 – Fingolimod (FTY720) – sphingosine 1-phosphate receptor modulator
 – FK778 – pyrimidine synthesis inhibitor
 – CP-690550 – JAK3 inhibitor
 – AEB-071 – protein kinase C inhibitor

• Biologics
 – Belatacept (LEA29Y) – anti-CD40
 – CTLA4Ig – blocks CD80/86 and CD28 co-stimulation pathways
 – Efalizumab – humanized anti-LFA1 antibody
Transplant Tolerance

Stable graft function without need for immunosuppressive drugs
Tolerance

“true” tolerance – a well functioning graft lacking histological signs of rejection, in the absence of any immunosuppressive drugs, in an immunocompetent host capable of accepting a second graft from the same donor origin while being able to reject a third-party graft.
Tolerance

• True tolerance
 – Identical twins
 – Bone marrow transplantation

• Operational tolerance
 – Emergent
 – Non-compliant
 – Elective

• Prope tolerance (IS minimization)
Clinically Tolerant Liver Transplant Recipients

<table>
<thead>
<tr>
<th>Method of Drug Withdrawal</th>
<th>Protocol</th>
<th>Emergent</th>
<th>Non-Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>28</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Age at TX (years)</td>
<td>11.8 +/- 15.5</td>
<td>3.5 +/- 4.5</td>
<td>19.8 +/- 22.6</td>
</tr>
<tr>
<td>Time from TX to wean (years)</td>
<td>5.7</td>
<td>3.13</td>
<td>7.3</td>
</tr>
<tr>
<td>Time from wean to drug withdrawal (years)</td>
<td>2.2 +/- 2.7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Current time off IS (years) - mean</td>
<td>10.8 (2.1 – 15.1)</td>
<td>11.7 (4.6 – 15.7)</td>
<td>17.1 (6.9 – 24.7)</td>
</tr>
</tbody>
</table>

Protocol Withdrawal

<table>
<thead>
<tr>
<th>Center</th>
<th>% patients off</th>
<th>% mild ACR</th>
<th>% Mod ACR</th>
<th>CR</th>
<th>Graft loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitt</td>
<td>19 (18/95)</td>
<td>23 (22/95)</td>
<td>3 (3/95)</td>
<td>3 duct injury</td>
<td>NR</td>
</tr>
<tr>
<td>Miami</td>
<td>19 (20/104)</td>
<td>52 (54/104)</td>
<td>5.7 (6/54)</td>
<td>2/104</td>
<td>1 Re-Tx</td>
</tr>
<tr>
<td>Kyoto</td>
<td>42 (49/115)</td>
<td>17.9 (20/115)</td>
<td>1 severe ACR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

Mazariegos – presented at SPLIT annual meeting, Nashville, Oct 2007
Identifying and Monitoring Tolerance

- Significant viral infection
- Absence of rejection
- Staged immunosuppression reduction
- Assay of alloreactivity (Sindhi)
Tolerance Induction

• Central Tolerance
• Peripheral Tolerance
Central Tolerance

Results from intrathymic deletion of T-cells with high avidity for thymically expressed antigens

- Bone marrow transplantation
- Chimerism
 - Macrochimerism – Sykes et al
 - Microchimerism – Starzl et al
Peripheral Tolerance

Anergy induction, deletion or active regulation of effector T-cells

- Depleting protocols
- C0-stimulatory blockade
Barriers to Tolerance

Why are these approaches successful in rodents and not in humans?

• Drug toxicities
• Redundant co-stimulatory pathways
• Memory T-cells
Conclusion

• Long-term complications of transplantation are primarily a function of the need for immunosuppression
• Alternate approaches to immunosuppression may lessen the impact
• Only true tolerance will eliminate risks
• Operational tolerance exists and may be inducible